Adaptive Polynomial Chaos Techniques for Uncertainty Quantification of a Gas Cooled Fast Reactor Transient

نویسندگان

  • Zoltán Perkó
  • Luca Gilli
  • Danny Lathouwers
  • Jan Leen Kloosterman
چکیده

Uncertainty quantification plays an increasingly important role in the nuclear community, especially with the rise of Best Estimate Plus Uncertainty methodologies. Sensitivity analysis, surrogate models, Monte Carlo sampling and several other techniques can be used to propagate input uncertainties. In recent years however polynomial chaos expansion has become a popular alternative providing high accuracy at affordable computational cost. This paper presents such polynomial chaos (PC) methods using adaptive sparse grids and adaptive basis set construction, together with an application to a Gas Cooled Fast Reactor transient. Comparison is made between a new sparse grid algorithm and the traditionally used technique proposed by Gerstner. An adaptive basis construction method is also introduced and is proved to be advantageous both from an accuracy and a computational point of view. As a demonstration the uncertainty quantification of a 50% loss of flow transient in the GFR2400 Gas Cooled Fast Reactor design was performed using the CATHARE code system. The results are compared to direct Monte Carlo sampling and show the superior convergence and high accuracy of the polynomial chaos expansion. Since PC techniques are easy to implement, they can offer an attractive alternative to traditional techniques for the uncertainty quantification of large scale problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial regression with derivative information in nuclear reactor uncertainty quantification

We introduce a novel technique of uncertainty quantification using polynomial regression with derivative information and apply it to analyze the performance of a model of a sodium-cooled fast reactor. We construct a surrogate model as a goal-oriented projection onto an incomplete space of polynomials, find coordinates of projection by collocation, and use derivative information to reduce the nu...

متن کامل

Adaptive Sparse Grid Approaches to Polynomial Chaos Expansions for Uncertainty Quantification

Adaptive Sparse Grid Approaches to Polynomial Chaos Expansions for Uncertainty Quantification by Justin Gregory Winokur Department of Mechanical Engineering & Materials Science Duke University Date: Approved: Omar M. Knio, Supervisor

متن کامل

Uncertainty quantification and apportionment in air quality models using the polynomial chaos method

Simulations of large-scale physical systems are often affected by the uncertainties in data, in model parameters, and by incomplete knowledge of the underlying physics. The traditional deterministic simulations do not account for such uncertainties. It is of interest to extend simulation results with “error bars” that quantify the degree of uncertainty. This added information provides a confide...

متن کامل

Uncertainty quantification for fractional order PI control system: Polynomial chaos approach

Stability and performance of a system can be inferred from the evolution of statistical characteristic (i.e. mean, variance...) of system states. The polynomial chaos of Wiener provides a computationally effective framework for uncertainty quantification of stochastic dynamics in terms of statistical characteristic. In this work, polynomial chaos is used for uncertainty quantification of fracti...

متن کامل

Efficient Uncertainty Quantification with Polynomial Chaos for Implicit Stiff Systems

The polynomial chaos method has been widely adopted as a computationally feasible approach for uncertainty quantification. Most studies to date have focused on non-stiff systems. When stiff systems are considered, implicit numerical integration requires the solution of a nonlinear system of equations at every time step. Using the Galerkin approach, the size of the system state increases from n ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013